Enrollment No: ____

Exam Seat No:_____

C.U.SHAH UNIVERSITY Summer Examination-2018

Subject Name : Computer Oriented Numerical Methods

	Subject (Code : 4CS02ICO1		Branch : B.Sc.I.T.				
	Semester Instruction	•: 2 Date : 25/ ons:	04/2018	Time :10:30 To 1:30	Marks :70			
	 (1) U (2) In (3) D (4) A 	Jse of Programmable c nstructions written on r Draw neat diagrams and Assume suitable data if	alculator & an nain answer b l figures (if ne needed.	y other electronic instrume ook are strictly to be obeye cessary) at right places.	nt is prohibited. d.			
Q-1	a)	Attempt the following The method of the method o	g questions: combines the fe	atures of Bisection and Secan	t methods.	(14)		
	b)	(a) Newton-Raphson	(b) bas a fast rate) False position	(c) none of these			
	U)	(a) Bisection method	(b) False pos	sition method (c) Secant	(d) none of these			
	c)	AX = b is called a non-	homogeneou	s system of linear equation	is, when			
		(a) $b = 0$	(២	b) $b \neq 0$	(c) none of these			
	d)	The Gauss-Siedel met	hod is an	method.				
	a)	a) direct The Fuler's method is f	(b he Runge Kutts) iterative	(c) none of these			
	e)	(a) 3^{rd}	(b) 1^{st}	(c) 4^{th}	(d) 2^{nd}			
	f)	Out of four Runge-Ku	itta methods, t	he Runge-Kutta method of	order is			
		having the largest error	or.					
		(a) 3^{rd}	(b) 1^{st}	(c) 4 th	(d) 2^{nd}			
	g)	The numerical integra	tion of one va	riable is called a				
	b)	(a) curvature	(t) (t, t) (c, t)	b) quadrature $(2, 2)$ $(2, 4)$	(c) none of these			
	n)	The relation $\{(1,1),(1,$	3),(1,4),(3,1)	$(3,3),(3,4)$ on the set $\{1,$	2, 3, 4 is			
	i)	(a) symmetric (b) Relation $R = \{(a, a), (b)\}$	b) reflexive (c,c) is _	(c) anti-symmetric on $A = \{a, b, c\}$.	(d) transitive			
	i)	a) symmetric b) reflexive c) transitive d) all of these						
	J)	Which of the following $(2, 2, 4)$ (5)	ig subsets are	partitions of $\{1, 2, 3, 4, 5\}$?				
		(a) $\{1,2\},\{2,3,4\},\{5\}$	(1	b) $\{1\},\{2,3,4\},\{4,5\}$				
		(c) $\{1\}, \{3,4\}, \{5,2\}$	(c	$1) \{1,2\},\{3,4\},\{4,5\}$				
	k)	Which of the following	ig is a poset?	no 1 3				
			Pd	56 1 5				

	(a) $\langle R, < \rangle$	(b) ($R,>\rangle$	(c) $\langle R, = \rangle$	(d) None of thesse
l)	If $\langle L, *, \oplus, ', 0 \rangle$	$,1\rangle$ is a comple	mented lattice	and $a \in L$ then a	$a \oplus a' =$
	(a) 0	(b) 1	(c) <i>a</i>	(d) none of	these
m)	Which of the	following are	anti-atoms of H	Boolean algebra ($\left\langle S_{30},D\right\rangle ?$
	(a) 6	(b) 10	(c) 15	(d) all	of these
n)	If $\langle S_{20}, *, \oplus, ', $	$\left 1,20\right\rangle$ is a Boo	lean algebra th	en complement	of 2 is
	(a) 3	(b) 6	(c) 7	(d) does i	not exist

Attempt any four questions from Q-2 to Q-8

Q-2	a) b)	Attempt all questions Find the root of the equation $x^2 - 9x + 1 = 0$ correct up to three decimal places using the Bisection method. Find the solution of $\frac{dy}{dx} = e^x - y$ up to the fifth approximation. Using Picard's	(14) (5)
	,	method given that $y(0) = 0$.	(5)
	c)	Find a root of the equation $x \sin x + \cos x = 0$ correct up to three significant figures using the Newton-Raphson method.	(4)
Q-3	,	Attempt all questions	(14)
	a)	Solve the following system of linear equations by finding A^{-1} by the Gauss- Jordan method. $x + 2y + z = 3$; $x + y + 3z = 14$; $x + 4y + 9z = 6$.	(5)
	b)	Solve the following system of linear equations by the Gauss-Siedel method.	(5)
		$4x + 2y - 2z = 4; \ 3x - 8y + 3z = -4; \ 2x + 5y + 9z = 12.$	
	C)	Solve the following system of linear equations by the Gauss-Elimination method.	(4)
0-4		x + 3y - 2z = 5; 2x + y - 3z = 1; 3x + 2y - z = 6. Attempt all questions	(14)
Ϋ́	a)	$\frac{\pi}{2}$	(14)
		Evaluate $\int_{0}^{2} e^{\sin x} dx$ by Simpson's 1/3 rule and taking n=6.	(5)
	b)	Evaluate $\int_{1}^{6} \log x dx$ by Simpson's 3/8 rule and taking n = 6.	(5)
	c)	$\frac{2}{2}$ Given the data below find the isothermal work done on the gas as it is	(4)
	•)	compressed from $v_1 = 22L$ to $v_2 = 2L$. Use $W = -\int_{v_1}^{v_2} p dv$	()

V L	2	7	12	17	22
P. Atm	12.20	3.49	2.049	1.44	1.11

Use Trapezoidal Rule.

Q-5 Attempt all questions

a) Using Euler modified method, obtain a solution of $\frac{dy}{dx} = x + |\sqrt{x}|, y(0) = 1$ for the range $0 \le x \le 0.6$ in steps of 0.2. (5)

(14)

Page 2 || 3

	b)	Determine $y(0.1)$ and $y(0.2)$ correct to four decimal places from $\frac{dy}{dy} = 2x + y y(0) = 1$. Use fourth order Runge-Kutta method	(5)
	c)	dx = 2x + y, $y(0) = 1$. Use fourth order Runge-Runa method. Use Regula-Falsi method to find a real root of the equation $\log x - \cos x = 0$ correct to three decimal places.	(4)
Q-6		Attempt all questions	(14)
	a)	Find the cover of an each element and draw the Hasse diagram of $\left< S_{90}, D \right>$	(5)
	b)	Prove that $\langle S_{30}, D \rangle$ is a lattice, where D denotes divides relation.	(5)
	c)	Prove that $\langle P(X), \subseteq \rangle$ is an equivalence relation. Where X be a non-empty set.	(4)
Q-7		Attempt all questions	(14)
	a)	Prove that $\langle N, D \rangle$ is a poset, where D denotes divides relation.	(10)
	b)	Prove that $\langle S_{42}, D \rangle$ is a complemented lattice, where D denotes divides relation.	(4)
	c)	Draw the hasse diagram of $\langle P(X), \subseteq \rangle$, Where $X = \{a, b, c\}$ and \subseteq denotes the	
Q-8	a)	relation of "subset". Attempt all questions Let m be a positive integer greater than 1, show that the relation $R = \{(a,b) a \equiv b \pmod{m}\}$ is an equivalence relation on the set of integers. What	(14) (5)
		are the partitions of the integers arising from congruence modulo 4?	
	b)	Prove that $\langle R, \min, \max \rangle$ is a lattice.	(5)
	c)	Draw the directed graph that represents the relation $R = \{(a,b), (b,c), (c,b), (d,c), (a,d), (d,b)\}.$	(4)

 $R = \{(a,b), (b,b), (b,c), (c,b)(d,c), (a,d), (d,b)\}.$

